Students Have Become Overly Dependent On Technology Essay Contest

Technology can be defined as human innovation that develops systems and applications to meet human needs, to increase the quality of life or to solve problems. To see the impact of technology in the life of an average American, one only has to put himself in the shoes of an average American. Whether you are a student or an adult, you wake up when the digital alarm clock rings, you catch the latest news on television while eating your breakfast, you type documents using your computer, you visit social networking sites to keep in touch with family and friends and when you come home, you rely on the Internet to play online games or to watch your favorite videos. This clearly shows our over dependence on technology. A recent Harris Poll from Harris Interactive reveals that nearly 65% or two-thirds of Americans think that today’s society is very dependent upon electronic gadgets. Despite doubts about technology’s role in increasing personal productivity, the majority of American consumers is of the opinion that technology will play an important role in the nation’s recovery from financial crisis and in assuring the continued prosperity of the nation. The information was gleaned from an online.If we just stop and reflect how technology has influenced our lives and how we have become so dependent on technology, then we realize that we cannot live without it. With the advent if e-mail and social networking sites, there are no more letters in our mailbox. ...
With so many online games and video games, there are fewer children playing outside. Whatever happened to the times when people walked to the stores to buy newspapers, when children played football in the park or when fitness buffs jogged? Instead of finding them in these places, one has to look indoors to find children, teenagers and adults with either a mouse or controller in their hands or on tread mills to exercise. We have become slaves to our technology. Of all the technological innovations, it is perhaps the computer that has the greatest impact on human beings. Computers have found their way into almost every aspect of our lives. They enable us to work from anywhere and keep in touch with family and friends especially those who live far away. They provide us with entertainment, allow us to chat and perform many other functions. Computers with internet connections have made the world a “global community”. All this is only possible with advanced technology that is making us more dependent on its usage. Technology has also helped to increase workplace efficiency. People depend on technology such as phones, computers, fax machines and printers. Imagine an office without such technology. Work will be done at a snail’s pace and there are bound to be errors. Today, even businesses rely on technology. E-commerce, that is the ability to do business globally via websites, has provided a larger market. Businesses are now open 24 hours a day, seven days a Sebastian 3 week. Technology has enabled people to do online shopping from the comforts of their homes. The Internet, cell phones and other technological may have contributed ...Show more

Essays collected represent data from multiple states, grades, and classroom teachers:

All essays were submitted online. In the online submission form we collected demographic data on all students and their teachers, including their grade, city, state, and school. In both years of the contest we included a rule that stated only three essays per teacher for each question, for a total of six essays per teacher, would be accepted. However, this rule was often overlooked, and teachers would submit essays from their entire classrooms. Thus, while we collected more essays in 2006, this total number of essays reflects a representation of fewer classrooms. In 2007 we rectified this problem by adding an algorithm that blocked any more than three essays from the same teacher. The data presented in Table 3 show that the essay contest grew between years 1 and 2 in the overall number of classrooms reached and that the essays collected represent a wide geographical distribution. In 2007, we did not receive essays from Alaska, Hawaii, Vermont, South Dakota, Wyoming, Maine, Washington, DC, Nebraska, or Mississippi despite sending out multiple e-mail solicitations to teacher contacts in those states.

Identification of misconceptions and misinformation from student essays:

During the process of reading and scoring essays, judges were asked to identify and document examples of misconceptions in their essays. Additionally, all essays were cursorily scanned by either K. R. Mills Shaw or K. Van Horne. Tables 5 and 6 provide an overview of the topics where misconceptions are common as well sample statements taken directly from student essays. While several hundred individual misconceptions were identified during the course of judging and review, many of the individual misconceptions could be categorized under broad topics in genetics (summarized in Table 5). To quantify the frequency of these common misconceptions we reanalyzed 500 (∼20%) of the essays, which included 250 essays chosen at random from each year's submissions. Individual misconceptions were identified and cataloged. After cataloging each misconception in the 500 essays and defining the categories of genetics in which they fell, “common” categories were defined by those being present in at least 5% of the essays examined. Of the 500 systematically reviewed essays, 278 (55.6%) revealed at least one obvious misconception. Another 101 essays (20.2%) were recognized for having two or more misconceptions. Misconceptions that were linked to essays with obvious language or writing barriers were excluded from quantitative analysis to avoid overrepresentation in our quantitative analysis. The prevalence of misconceptions per topic area is summarized in Figure 2.

Figure 2.—

Prevalence of misconceptions by genetics topic. A total of 500 essays were chosen at random (20% of total submitted) and were systematically reviewed for misconceptions. Frequently observed topics of misconceptions were identified and essays were cataloged on the basis of the type(s) of misconception(s) they revealed.

Standards and common areas of misconceptions:

Misconceptions were identified and categorized into a general topic area. We then examined how standards were related to these main topic areas, specifically patterns of inheritance and the deterministic nature of genes. We analyzed 20 sets of state biology standards at random to determine the nature of the standards in patterns of inheritance at the introductory biology or life science level in high school. Supplemental Table 1 at http://www.genetics.org/supplemental/ highlights four sets of these standards that provide a range of coverage of patterns of inheritance. A majority of these basic genetics/cell biology standards (15/20) included an examination of Mendel's laws of inheritance, some specifically describing the requirement to understand probability, Punnett squares, and the differences between autosomal dominant, autosomal recessive, and sex-linked traits. Other states included only more broad descriptions where a student would, for example, “Explain current scientific ideas and information about the molecular and genetic basis of heredity” (see supplemental Table 1). These are important data because they reflect the highly diverse nature of the level of detail required of students in U.S. high schools. While standards that fail to provide comprehensive detail allow talented teachers to provide creative and challenging learning opportunities for students, they can often also result in learning experiences that fail to effectively teach students even the most basic concepts in biology.

Genetic technologies:

The single greatest number of misconceptions identified from student essays could be broadly defined as falling into the category of “genetic technologies.” When answering the question “If you were a genetics researcher, what would you study and why?” students often expressed their goal of curing multiple unrelated diseases. The reality is that most genetics researchers are often several steps removed from work on specific cures but instead devote their efforts to improving the molecular understanding of disease with the ultimate goal of improved treatments. Moreover, scientists generally study only one specific illness or class or related diseases. The work scientists currently perform to identify a disease-causing mutation is prominent in student essays with the common extrapolation to the “curing” of disease through gene replacement. Often, student essays also suggested that genetic engineering allows us to put a gene from any species into another species to have that trait expressed in exactly the same manner as in the original species. Students do not understand the complexity of biotechnology and genetic engineering. They make broad leaps without demonstrating an understanding for the multiple genetic and epigenetic (or environmental) factors that play a role in genetic regulation and manipulation of genetic materials in the laboratory setting. Moreover, there is a disconnect between observed characteristics and the physiological function of genes:

Finally, we note the prevalence of essays that included information on the importance of stem cell research. While clearly a prevalent topic in the popular literature and press, students often discussed stem cell biology without ever discussing the genetics of stem cells. We did not include essays that included information on stem cells in our quantitative analysis. However, we note that scanning our database from 2006 for all references of “stem cells” revealed that almost one-quarter of essay submissions included this terminology without actively exploring the genetic nature of these cells despite the clear genetics-oriented nature of the essay questions.

Deterministic nature of genes:

Another common misconception we observed is that one gene is always responsible for one trait or one gene with one mutation always causes one disease. The discovery of genes that convey and determine a specific phenotype is often displayed and hyped in the media. A cursory search of online news outlets yielded example headlines that could easily be misinterpreted, adding credibility to students' misconceptions. Some examples include the following titles: “Turning Off Suspect Gene Makes Mice Smarter” (nytimes.com, May 29, 2007) and “Researchers narrow search for longevity gene” (cnn.com, August 28, 2001). It is important for students to understand that it is rare that a single gene has complete control over an exhibited phenotype. Instead, multiple factors contribute to phenotype. Multiple genes often work together, with the environment, to determine ultimate phenotype. Our examination of standards revealed that only 3 of 20 state standards specifically mentioned that students should learn about polygenic inheritance (that more than one gene can contribute to a specific phenotype) and only 2 described the role of the environment in controlling phenotype. Thus, it is not surprising that we would see a common misconception that single genes are the cause of most traits and inherited diseases. Compared to the general nature of genetic inheritance, far fewer students would have necessarily been exposed to the concepts of non-Mendelian and polygenic inheritance.

Patterns of inheritance:

Patterns of inheritance was another topic that revealed numerous misconceptions and misunderstandings of students. Not only were students often unable to correctly describe the nature of simple dominant and recessive patterns of inheritance, but also they were not able to go into any level of depth regarding genes or alleles, the physiological function of genes (proteins), or non-Mendelian patterns of inheritance. Some students even described genetic technologies as being able to “prevent the inheritance” of disease genes. Students focused primarily on simple Mendelian inheritance that was able to be analyzed via Punnett square analysis. All students described only monogenic traits that followed simple autosomal dominant, autosomal recessive, or X-linked inheritance. Students were often unable to adequately describe sources of abnormal chromosome numbers. Essays did not mention errors during meiotic cell division and generation of gametes as the source of monosomies or trisomies. Our review of state science standards for high school students in biology suggests, not surprisingly, that the majority of states provide specific, detailed standards that mandate teaching students, even at the earliest levels of their life science education in high school, the basic biology of inheritance patterns. Although 15 of the 20 biology standards included basic patterns of inheritance knowledge, when we reviewed the essays that were cataloged as having an error or a misconception falling under “patterns of inheritance,” 80% of those essays inaccurately described a basic tenet of Mendelian inheritance, despite their expected coverage of this material at their current grade level or in previous biology courses.

Nature of genes and genetic material:

All 20 state standards examined require coverage of the nature of DNA as the hereditary material in living things. Nevertheless, students suggested that lower organisms, including bacteria and fungi, often do not carry DNA. We also noted student confusion regarding the hierarchal organization of genetic material. Notably, students were frequently unable to accurately define DNA, genes, and chromosomes. Often, these terms were instead used interchangeably. In 2007, <1% of essays included any information on additional genetic material in the genome. Students did not mention gene expression control elements, repetitive sequences (unless discussing Huntington's disease), or other nongene elements in the genome. Finally, students often described specific protein-encoding segments, or genes, as discrete elements that could easily be removed from one context and added in a separate context. While this view likely extends from students learning basic biotechnology and bacterial transformation techniques (for example, adding the green fluorescent protein from jellyfish to bacterial strains), likening this process to the adding of a chemical to a solution is an oversimplification, at best.

Genetic basis of disease:

One of the principle errors observed in this category was the confusion of “hereditary” and “genetic” when describing diseases. In a small subset of cases, ∼10% of the total essays categorized as having a misconception in this topic, students completely misrepresented the genetic nature of a specific illness (e.g., calling HIV-1 an inherited disorder). While most illnesses have a genetic component, this does not make them hereditary. Moreover, while even infectious diseases can be considered to have a genetic component whether it be of the genetics of the virus itself or how individual genetics could result in different manifestations of the same illness, students must learn to clarify these differences. Cancer is a genetic disease. Only rare cancers, however, are hereditary. However, students often described breast and ovarian cancer as hereditary due to the mutations in BRCA1 or BRCA2. While mutations in these genes often do result in a cancer predisposition that appears to be inherited in a dominant-like fashion, the majority of breast cancer cases are not due to mutations in these genes.

Genetics research:

A large number of student essays focused on the promise of genetic engineering in human health and reproduction (see also the Reproductive technologies section). While superficially this reflects that students recognize the positive influence that the study of genetics can have in their lives, numerous misconceptions suggest that students still fail to truly understand the nature and limitations of genetic research. An examination of state science standards, briefly described above, reveals that while state and national process (not necessarily content) standards require coverage of the nature of scientific research, inquiry, and discovery, this does not necessarily equate to students learning about how scientists actively perform research. Instead, these process standards reflect the fact that teachers are expected to provide students with opportunities for inquiry and investigation in the context of their own classroom laboratory experiments and activities. In short, state science standards do not require students to learn about the nature of scientific research.

Reproductive technologies:

Misconceptions falling under the category of “reproductive technologies” could have been accurately cataloged under genetic technologies. However, this class of misconceptions was frequent enough to require special treatment. In these cases students continued to explore their ideas of genetic engineering and cloning to describe the future of reproductive control where prospective parents would “improve” and “design” their offspring, with the ultimate goal of having the “perfect” child. Eugenics, either in specific use of terminology or in concept, appeared in 15% of essays collected in 2007. This percentage is not reflective of the goals or ongoing work of genetics research. Unfortunately, its prevalence in student essays is likely due to both its historical role in research as well as the “genohype.” Interestingly, the idea behind eugenics is not overtly described in the standards of any state science standards that we explored. The frequency of students describing using genetics to improve genotypes and design human beings, however, suggests that this is either the hook that teachers are using or the message that students are hearing from the media. More research would be required to determine which of these options is most prevalent.

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *